wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Let y=y(x) be the solution of the differential equation dydx+2y2cos4xcos2x=xetan1(2cot2x), 0<x<π2 with y(π4)=π232. If y(π3)=π218etan1(α), then the value of 3α2 is equal to

A
2.00
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
2.000
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
2.0
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution

dydx+22y1+cos22x=xetan1(2cot2x)

I.F.=exp(22dx1+cos22x)=exp(22sec22x2+tan22xdx)

=exp(tan1(tan2x2))
Solution is
yetan1(tan2x2)=xetan1(2cot2x)etan1(tan2x2)dx+c

y.etan1(tan2x2)=eπ/2x22+c

When x=π4,y=π232 gives c=0
When x=π3,y=π218etan1α

So π218etan1αetan1(32)=eπ/2π218
tan1α+tan1(32)=π2

tan1(α)=tan1(23)

α=233α2=2

flag
Suggest Corrections
thumbs-up
5
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon