Let y=y(x) be the solution of the differential equation, xdydx+y=xlogex,(x>1). If 2y(2)=loge4−1, then y(e) is equal to:
A
e4
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
e24
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
−e2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
−e22
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Ae4 xdydx+y=xlnx ⇒dydx+1x.y=lnx I.F.=e∫1xdx=x ⇒x.y=∫x.lnxdx⇒x.y=lnx.x22−∫1x.x22dx+C=x22lnx−x24+C
at x=2,2y=loge4−1
So, ln4−1=42ln2−44+C ⇒C=0
Therefore, x.y=x22lnx−x24
at x=e ⇒ey=e22lne−e24 ⇒y=e4