wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Let y=y(x) be the solution of the differential equation (y+1)tan2xdx+tanxdy+ydx=0,x(0,π2). If limx0xy(x)=1, then the value of y(π4) is

A
π4+1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
π4
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
π4
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
π41
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is C π4
(y+1)tan2xdx+tanxdy+ydx=0
dydx=(y+1)tan2x+ytanx
dydx=(y+1)tanxycotx
dydx+y(tanx+cotx)=tanx
I.F.=e(tanx+cotx)dx=esec2xtanxdx
I.F.=tanx
ytanx=tan2xdx
ytanx=(1sec2x)dx
ytanx=xtanx+c

limx0xy(x)=1
limx0xtanx(xtanx+c)=1
c=1
y(π4)=π4

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon