wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Letyy(x) be the solution of the differential
equation sinxdydxycosx4x,xϵ(0,π).ify(π2) = 0,
then y (π6) is equal to

A
49π2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
493π2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
893π2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
None of these
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution

The correct option is D None of these
dydxcotxy=4xsinx
This is a linear D.E
Integrating factor(I.F)=ecotxdx=eln|sinx|
I.F=1sinx
ysinx=4xsin2xdx=4xIcosec2IIxdx
Applying integration by parts,
ysinx=4[x(cotx)(cotx)dx]
=4[xcotx+lnsinx]+c
y=4xsinx+4sinxlnsinx+csinx
As y(π2)=0
0
=2π+0+c
c=2π|ln|=0
y=4xsinx+4sinxlnsinx+2πsinx
y(π6)y=2π3(12)+4(12)(ln2)+π
y=2π32ln2.

1167349_1264967_ans_e57974dcb1b249c4818f719a9299d7ea.jpg

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
General and Particular Solutions of a DE
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon