wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Let y=y(x) is the solution of the differential equation
ylnydxdy+xlny=0 where y(2)=e2 and y>1, then the value of 6k such that y(k)=e3, is

Open in App
Solution

ylnydxdy+xlny=0
dxdy+xylny=1y
It becomes linear differential equation
P=1ylny and Q=1y
I.F.=e1ylnydy=eln|lny|=lny
Solution is,
x(I.F.)=(I.F)1ydy
xlny=(lny)1ydy
Let lny=t, 1ydy=dt
xlny=t dt
xlny=t22+c
xlny=(lny)22+c
x=lny2+clny
Given, y(2)=e2c=2
x=lny2+2lny
Now, y(k)=e3
k=32+23=136
6k=13

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon