Let y=y(x) satisfies the equation dydx−|A|=0, for all x>0, where A=⎡⎢
⎢
⎢⎣ysinx10−11201x⎤⎥
⎥
⎥⎦.
If y(π)=π+2, then the value of y(π2) is:
A
π2−4π
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
π2+4π
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
3π2−1π
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
π2−1π
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Bπ2+4π From the given matrix, we have: |A|=−yx−sinx(−2)+1(2) ⇒|A|=2+2sinx−yx
Hence we have: dydx+yx=2+2sinx I.f=elnx=x ∫d(xy)=∫2x(1+sinx)dx ⇒xy=x2−2xcosx+∫2cosxdx ⇒xy=x2−2xcosx+2sinx+c ∴y(π)=π+2 ⇒π(π+2)=π2−2π(−1)+0+c ⇒c=0
For y(π2) π2y=π24−2π2(0)+2 ⇒y(π2)=π2+4π