Let y=y(x) be the solution of the differential equation cosxdydx+2ysinx=sin2x,x∈(0,π/2).If y(π3)=0, then yπ4 is equal to:
2+2
2-2
12-1
Explanation for the correct answer:
Calculating the value of yπ4:
Given,
cosxdydx+2ysinx=sin2x⇒dydx+2sinxcosxy=2sinx[∵sin2x=2sinxcosx]
Now,
I.F.=e∫2sinxcosxdx=e2lnsecx=sec2x
Therefore,
y.sec2x=∫2sinx.sec2xdx⇒y.sec2x=∫2tanx.secxdx⇒y.sec2x=2secx+c
Substituting x=π3,y=0 in the above equation:
⇒0=2secπ3+c⇒c=-4∴ysec2x=2secx-4
Now, putting x=π4:
⇒y.sec2π4=2secπ4-4⇒y.2=22-4⇒y=2-2
Hence the correct answer is option (B).