Let z1=2−i,z2=−2+i. Find
(i) Re(z1z2¯z1)
(ii) Im (1z1¯z1)
Here z1=2−i,z2=−2+i∴ ¯z1=2+i
(i) Now z1z2=(2−i)(−2+i)=−4+2i+2i−i2=(−4+1)+4i=−3+4i
∴ =z1z2¯z1=−3+4i2+i×2−i2−i
=−6+3i+8i−4i24−i2
=(−6+4)+11i4+1=−2+11i5
=−25+115i
∴ Re(z1z2¯z1)=−25.
(ii) 1z1¯z1=1(2−i)(2+i)=14−i2=15
∴ Im(1z1¯z1)=0