Let z1 and z2 be complex numbers such that z1≠z2 and |z1|=|z2|. If Re(z1)>0 and lm(z2)<0, then z1+z2z1−z2 is
A
one
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
real and positive
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
real and negative
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
purely imaginary
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is D purely imaginary z1=x1+iy1;z2=x2+iy2 Re(z1)>0⇒x1>0 and Im(z2)<0⇒y2<0 |z1|=|z2|⇒|z1|2=|z2|2 ⇒z1¯¯¯¯¯z1=z2¯¯¯¯¯z2 Now (z1+z2z1−z2)+(¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯z1+z2z1−z2) (z1+z2z1−z2)+(¯¯¯¯¯z1+¯¯¯¯¯z2¯¯¯¯¯z1−¯¯¯¯¯z2)=z1¯¯¯¯¯z1+z2¯¯¯¯¯z1−z2¯¯¯¯¯z2+z1¯¯¯¯¯z2−z2¯¯¯¯¯z1−z2¯¯¯¯¯z1(z1−z2)(¯¯¯¯¯z1−¯¯¯¯¯z2) =2(|z1|2=|z2|2)(z1−z2)(¯¯¯¯¯z1−¯¯¯¯¯z2)=0(∵|z1|2=|z2|2) ⇒z1+z2z1−z2 is purely imaginary