Let z1 and z2 be roots of the equation z2+pz+q=0, where p and q may be complex numbers. Let A and B represents z1 and
z2 in the complex plane. Given
∠ AOB=α≠0 and OA=OB where O is the origin. Using the given information what will be the value of p2?
Since ¯OB is obtained by rotating ¯OA through α,,hence¯OB=¯OAeiα
⇒ z2−0=(z10)eiα⇒ z2z1=cosα+isinα
⇒ z2z1=2cos2α2−1+2isinα2=cosα2
⇒ z1+z2z1=2cosα2(cosα2+isinα2)
⇒ (z1+z2)2z21=4cos2α2(cosα2+isinα2)2
⇒ 4cos2α2(cosα+isinα)=4cos2z2z1[from(i)]
⇒ (z1+z2)2=4cos2α2(z2z1)⇒(−p)2=4cos2α2(q)
(∵ z1 and z2 and the roots of z2+pz+q=0)
Therefore,p2=4qcos2α2 ∵ z1+z2=−p,z1z2=q).