Let z1 and z2 be the roots of a quadratic equation z2+pz+q=0, where p,q are complex numbers. Let A and B represent z1 and z2 in complex plane. If ∠AOB=α≠0 and OA=OB (where O is origin), then :
A
p2=4qcos2α2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
p2=2qcos2α2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
p2=4qcos2α
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
p2=2qcos2α
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Ap2=4qcos2α2 We have, z1+z2=−p−−−(1) z1z2=q−−−(2) ⎡⎢
⎢
⎢
⎢
⎢
⎢⎣∵forax2+bx+csumofroots=−coefficientofxcoefficientofx2productsofroots=constantco.ofx2⎤⎥
⎥
⎥
⎥
⎥
⎥⎦ also given, ∠AOB=α ⇒z2z1=eiα ⇒z2=z1eiα---(3) [asOA=OB⇒|z1|=|z2|] So, Substituting (3) & (2), z1+z1eiα=−p ⇒z1+z12eiα=−p ⇒z1+(1+eiα)2=−p ⇒9eiα(1+2eiα+ei2α)=p2 [from (4)] ⇒q(e−iα+2+eiα)=p2[eiα+e−iα=cosα+isinα+cosα−isinα=2cosα] ⇒q(2+2cosα)=p2 ⇒4qcos2α2=p2