Geometrical Representation of Algebra of Complex Numbers
Let z1 and z2...
Question
Let z1 and z2 be two distinct complex numbers and let z=(1–t)z1+tz2 for some real number t with 0<t<1. If Arg(w) denotes the principal argument of a non-zero complex number w, then
A
Arg(z–z1)=Arg(z2–z1)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
|z–z1|+|z–z2|=|z1–z2|
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
Arg(z–z1)=Arg(z–z2)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
∣∣∣z−z1¯z−¯z1z2−z1¯z2−¯z1∣∣∣=0
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct options are AArg(z–z1)=Arg(z2–z1) B|z–z1|+|z–z2|=|z1–z2| D∣∣∣z−z1¯z−¯z1z2−z1¯z2−¯z1∣∣∣=0
We have z=(1−t)z1+tz2,0<t<1, ⇒z=tz2+(1−t)z1t+1−t ⇒z=tz2+(1−t)z1 z1,z2,z3 are collinear
So Arg(z−z1)=Arg(z−z2)=Arg(z2−z1)