Let z1 and z2 be two distinct complex numbers and let z=(1−t)z1+tz2 for some real number t with 0<t<1. If Arg(w) denotes the principal argument of a non-zero complex number w, then:
A
|z−z1|+|z−z2|=|z1−z2|
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
Arg(z−z1)=Arg(z−z2)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
∣∣∣z−z1¯¯¯z−¯¯¯z1z2−z1¯¯¯z2−¯¯¯z1∣∣∣=0
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
Arg(z−z1)=Arg(z2−z1)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct options are A|z−z1|+|z−z2|=|z1−z2| C∣∣∣z−z1¯¯¯z−¯¯¯z1z2−z1¯¯¯z2−¯¯¯z1∣∣∣=0 DArg(z−z1)=Arg(z2−z1) Given z=(1−t)z1+tz2 ⇒z−z1z2−z1=t⇒arg(z−z1z2−z1)=0⋯ (1) [As t is real hence the z−z1z2−z1 has arg is 0 ]
⇒arg(z−z1)=arg(z2−z1)
z−z1z2−z1=¯¯¯z−¯¯¯¯¯z1¯¯¯¯¯z2−¯¯¯¯¯z1 As [t is real then t and its conjugate are equal]