The correct option is
B a2=3bAccording to what we learnt in quadratic solutions, since a & b are real numbers:
Sum of roots = −a=z1+z2=|z1+z2|
Product of roots = b=z1z2=|z1z2|
Per complex numbers, |z|2=z.¯z
As 0,z1,z2 form an equilateral △,
|z1|=|z2|=|z2−z1|
∴|z1|2=|z2|2
As shown above,
|z2|=|z2−z1|
Squaring both sides we get
|z2|2=|z2−z1|2
Since ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯z2−z1=¯¯¯¯¯z2−¯¯¯¯¯z1, we get
z2.¯¯¯¯¯z2=(z2−z1)(¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯z2−z1)
⇒z2.¯¯¯¯¯z2=(z2−z1)(¯¯¯¯¯z2−¯¯¯¯¯z1)
⇒z2.¯¯¯¯¯z2=z2.¯¯¯¯¯z2+z1.¯¯¯¯¯z1−(z1¯¯¯¯¯z2+¯¯¯¯¯z1z2)
⇒|z1|2=z1¯¯¯¯¯z2+¯¯¯¯¯z1z2 --- (i)
As shown above
|z1+z2|=−a
Squaring both sides we get
(z1+z2)+(¯¯¯¯¯z1+¯¯¯¯¯z2)=a2
⇒|z1|2+|z2|2+z1¯¯¯¯¯z2+¯¯¯¯¯z1z2=a2
⇒2|z1|2+z1¯¯¯¯¯z2+¯¯¯¯¯z1z2=a2 --- (ii)
⇒2|z1|2+|z1|2=a2
⇒3|z1|2=a2
⇒|z1|2=a23=|z2|2
As shown above,
|z1z2|=b
Squaring both sides we get
|z1z2|2=b2
⇒(z1z2)(¯¯¯¯¯z1.¯¯¯¯¯z2)=b2
⇒|z1|2.|z2|2=b2
⇒a23.a23=b2
⇒a4=9b2
∴a2=3b
Hence the answer is C