wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Let z=1sinα+icosα where a(0,π2), then the modulus and the prinicipal value of the argument of z are respectively:

A
2(1sinα),(π4+α2)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
2(1sinα),(π4α2)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
2(1+sinα),(π4+α2)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
2(1+sinα),(π4α2)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is A 2(1sinα),(π4+α2)
We have z=(1sinα)+icosα

|z|=(1sinα)2+cos2α

|z|=1+sin2α2sinα+cos2α

|z|=22sinα

|z|=2(1sinα)

arg(z)=tan1(cosα1sinα)

cosα=1tan2α21+tan2α2

1sinα=12tanα21+tan2α2

1sinα=(1tanα2)21+tan2α2

Therefore, cosα1sinα=1tan2α2(1tanα2)2=1+tanα21tanα2

arg(z)=tan1(1+tanα21tanα2)

arg(z)=tan1(tan(π4+α2))

arg(z)=π4+α2


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Geometric Representation and Trigonometric Form
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon