wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Let z1,z2 and z3 be three complex numbers such that |z1|=|z2|=|z3|=1 and z21z2z3+z22z3z1+z23z1z2+1=0. Then the sum of all possible values of |z1+z2+z3| is

Open in App
Solution

z21z2z3+z22z3z1+z23z1z2+1=0z31+z32+z33+z1z2z3=0z31+z32+z333z1z2z3=4z1z2z3

Since a3+b3+c33abc=(a+b+c)((a+b+c)23(ab+bc+ac)),
(z1+z2+z3)[(z1+z2+z3)23(z1z2+z2z3+z3z1)]=4z1z2z3(z1+z2+z3)[(z1+z2+z3)23z1z2z3(1z1+1z2+1z3)]=4z1z2z3(z1+z2+z3)33z1z2z3(z1+z2+z3)(¯¯¯¯¯z1+¯¯¯¯¯z2+¯¯¯¯¯z3)=4z1z2z3|z1+z2+z3|3=|z1z2z3|[3|z1+z2+z3|24|]

Let |z1+z2+z3|=x
Then, x3=|3x24|
x=1 or 2
Sum =1+2=3

flag
Suggest Corrections
thumbs-up
2
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Geometrical Representation of Algebra of Complex Numbers
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon