Let z1=r1(cosθ1+isinθ2),z2=r2(cosθ2+isinθ2),a=rcosα and b=rsinα
then
|z1|=r1,|z2|=r2 and a2+b2=r2 ........... (1)
Now |az1+bz2|2=(az1+bz2)(a¯¯¯¯¯z1+b¯¯¯¯¯z2)
=a2z1¯¯¯¯¯z1+abz1¯¯¯¯¯z2+abz2¯¯¯¯¯z1+b2z2¯¯¯¯¯z2
=a2|z1|2+b2|z2|2+ab(z1¯¯¯¯¯z2+¯¯¯¯¯z1z2)
=a2|z1|2+b2|z2|2+2abRe(z1¯¯¯¯¯z2)
=r2r21cos2α+r2r22sin2α+2r2cosαsinα r1r2cos(θ1−θ2)
=r2{r21cos2α+r22sin2α+2r1r2 cosαsinαcos(θ1−θ2)}
=r22{r21(1+cos2α)+r22(1−cos2α)+2r1r2sin2αcos(θ1−θ2)}
=r22{A+Bcos2α+Csin2α}
when A=r21+r22,B=r21−r22 and C=2r1r2cos(θ1−θ2)
∴2|az1+bz2|2r2=A+Bcos2α+Csin2α
⇒22|az1+bz2|2(a2+b2)=A+Bcos2α+Csin2α {from (1)}
=A+√(B2+C2){B√B2+C2cos2α+C√B2+C2sin2α}
Now let B=Rsinϕ and C=Rcosϕ
∴2|az1+bz2|2(a2+b2)=A+Rsin(2α+ϕ)
Hence max. and min. values of 2|az1+bz2|2(a2+b2) are respectively A + R and A - R
∴⇒A−R≤2|az1+bz2|2a2+b2≤A+R ........ (2)
R=√(B2+C2)=√{(r21−r22)2+4r21r22cos2(θ1−θ2)}
=√{r41+r42+2r21r22cos(2θ1−2θ2)}