wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Let z1,z2 be any two complex numbers and a, b two real numbers such that a2+b20, then |z1|2+|z2|2|z21+z22|2|az1+bz2|2a2+b2|z1|2+|z2|2+|z21+z22|.
If this is true enter 1, else enter 0.

Open in App
Solution

Let z1=r1(cosθ1+isinθ2),z2=r2(cosθ2+isinθ2),a=rcosα and b=rsinα
then
|z1|=r1,|z2|=r2 and a2+b2=r2 ........... (1)
Now |az1+bz2|2=(az1+bz2)(a¯¯¯¯¯z1+b¯¯¯¯¯z2)
=a2z1¯¯¯¯¯z1+abz1¯¯¯¯¯z2+abz2¯¯¯¯¯z1+b2z2¯¯¯¯¯z2
=a2|z1|2+b2|z2|2+ab(z1¯¯¯¯¯z2+¯¯¯¯¯z1z2)
=a2|z1|2+b2|z2|2+2abRe(z1¯¯¯¯¯z2)
=r2r21cos2α+r2r22sin2α+2r2cosαsinα r1r2cos(θ1θ2)
=r2{r21cos2α+r22sin2α+2r1r2 cosαsinαcos(θ1θ2)}
=r22{r21(1+cos2α)+r22(1cos2α)+2r1r2sin2αcos(θ1θ2)}
=r22{A+Bcos2α+Csin2α}
when A=r21+r22,B=r21r22 and C=2r1r2cos(θ1θ2)
2|az1+bz2|2r2=A+Bcos2α+Csin2α
22|az1+bz2|2(a2+b2)=A+Bcos2α+Csin2α {from (1)}
=A+(B2+C2){BB2+C2cos2α+CB2+C2sin2α}
Now let B=Rsinϕ and C=Rcosϕ
2|az1+bz2|2(a2+b2)=A+Rsin(2α+ϕ)
Hence max. and min. values of 2|az1+bz2|2(a2+b2) are respectively A + R and A - R
AR2|az1+bz2|2a2+b2A+R ........ (2)
R=(B2+C2)={(r21r22)2+4r21r22cos2(θ1θ2)}
={r41+r42+2r21r22cos(2θ12θ2)}

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Geometric Representation and Trigonometric Form
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon