Let z1 ,z2 be two complex numbers such that z1+z2 and
z1z2 both are real , then
Lets z1=a+ib,z2=c+id, then
z1+z2 is real ⇒(a+b)+i(b+d) is real
⇒ b+d=0 ⇒ d=−b ..............(i)
z1 z2 is real ⇒(ad−bd)+i(ac+bc) is real
⇒ ad+dc=0 ⇒ a(−b)+bc=0 ⇒ a=c
∵ z1=a+ib=c−id=(¯z2 (∵ a=c and b=−d)