Since z1≠z2≠z3
∴∑z21=∑z1z2⇒z1,z2,z3 are the vertices of equilateral triangle.
Now, |z1−z2|=|z2−z3|=|z3−z1|=2√3
Given, |z1+z2+z3|=21
⇒(z1+z2+z3)(¯¯¯¯¯z1+¯¯¯¯¯z2+¯¯¯¯¯z3)=441
⇒|z1|2+|z2|2+|z3|2+ (z1¯¯¯¯¯z2+z2¯¯¯¯¯z1)+(z2¯¯¯¯¯z3+z3¯¯¯¯¯z2)+(z3¯¯¯¯¯z1+z1¯¯¯¯¯z3)=441
Let (z1¯¯¯¯¯z2+z2¯¯¯¯¯z1)+(z2¯¯¯¯¯z3+z3¯¯¯¯¯z2)+(z3¯¯¯¯¯z1+z1¯¯¯¯¯z3)=x
Then, |z2|2+|z3|2=441−|z1|2−x
⇒|z2|2+|z3|2=441−27−x
⇒|z2|2+|z3|2=414−x ⋯(1)
Now, |z1−z2|2=12 ⋯(2)
|z2−z3|2=12 ⋯(3)
|z3−z1|2=12 ⋯(4)
On adding (2),(3) and (4), we get
x=2(|z2|2+|z3|2)+18 ⋯(5)
∴ From (1) and (5), we get
3(|z2|2+|z3|2)=396
⇒|z2|2+|z3|2=132