wiz-icon
MyQuestionIcon
MyQuestionIcon
2
You visited us 2 times! Enjoying our articles? Unlock Full Access!
Question

Let z1,z2,z3 be complex numbers such that z21+z22+z23=z1z2+z2z3+z3z1 and |z1+z2+z3|=21. Given that |z1z2|=23, |z1|=33, then the value of |z2|2+|z3|2 is

Open in App
Solution

Since z1z2z3
z21=z1z2z1,z2,z3 are the vertices of equilateral triangle.
Now, |z1z2|=|z2z3|=|z3z1|=23
Given, |z1+z2+z3|=21
(z1+z2+z3)(¯¯¯¯¯z1+¯¯¯¯¯z2+¯¯¯¯¯z3)=441
|z1|2+|z2|2+|z3|2+ (z1¯¯¯¯¯z2+z2¯¯¯¯¯z1)+(z2¯¯¯¯¯z3+z3¯¯¯¯¯z2)+(z3¯¯¯¯¯z1+z1¯¯¯¯¯z3)=441

Let (z1¯¯¯¯¯z2+z2¯¯¯¯¯z1)+(z2¯¯¯¯¯z3+z3¯¯¯¯¯z2)+(z3¯¯¯¯¯z1+z1¯¯¯¯¯z3)=x
Then, |z2|2+|z3|2=441|z1|2x
|z2|2+|z3|2=44127x
|z2|2+|z3|2=414x (1)

Now, |z1z2|2=12 (2)
|z2z3|2=12 (3)
|z3z1|2=12 (4)
On adding (2),(3) and (4), we get
x=2(|z2|2+|z3|2)+18 (5)

From (1) and (5), we get
3(|z2|2+|z3|2)=396
|z2|2+|z3|2=132

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Geometric Representation and Trigonometric Form
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon