The correct options are
B arg(z3z2)=arg(z3−z1z2−z1)2
C Orthocenter of triangle formed by z1,z2,z3 is z1+z2+z3
D If triangle formed by z1,z2,z3 is equilateral, then z1+z2+z3=0
Given,
∣∣
∣∣abcbcacab∣∣
∣∣=0
⇒a3+b3+c3−3abc=0
⇒(a+b+c)(a2+b2+c2−ab−bc−ca)=0
⇒12(a+b+c)](a−b)2+(b−c)2+(c−a)2]=0
⇒(a−b)2+(b−c)2+(c−a)2=0
⇒a=b=c[∵a+b+c≠0,∵z1≠0,∴a≠0 etc.]
Hence, OA=OB=OC, where O is the origin and A,B,C are the point representing z1,z2 and z3, respectively. Therefore, O is circumcentre of ∠ABC.
Now,
arg(z3z2)=∠BOC (i)
=2∠BAC
=2arg(z3−z1z2−z1) (ii)
=arg(z3−z1z2−z1)2[∵∠BOC=2∠BAC]
Hence, arg(z3z2)=arg(z3−z1z2−z1)2