Given that, z=9+bi
Since, imaginary parts of z2 & z3 are equal
Therefore, z2−¯z22i=z3−¯z32i
⇒(z−¯z)(z+¯z)=(z−¯z)(z2+¯z2+z¯z)
⇒z+¯z=(z+¯z)2−z¯z
⇒z¯z=182−18=306
⇒|z|2=306
⇒81+b2=306
⇒b=15
⇒b3=5
Ans: 5