Let z and ω be complex numbers such that ¯z+i¯ω=0 and arg zω=π. Then arg z equals
π4
5π4
3π4
π2
¯z+i¯ω=0⇒¯z=−i¯ω⇒z=iω⇒ω=−izAlso arg(zω)=π⇒arg(−iz2)=π⇒arg(−i)+2 arg(z)=π⇒−π2+2 arg (z)=π [∵arg(−i)=−π2]⇒2 arg (z)=3π2⇒arg(z)=3π4