Let z and w be two complex numbers such that
|z|≤1, |w|≤1 and |z+iw|= |z- i¯¯¯¯w|= 2. Then z is equal to
1 or -1
Let z=a+ib, |z|≤b ⇒ a2+b2≤1
And w=c+id, |w|≤b ⇒ c2+d2≤1
|z+iw|=|a+ib+i(c+id)|=2
⇒ (a−b)2 + (b+c)2 = 4 ⋯⋯(i)
|z+i¯¯¯¯w|=|a+ib-i(c-id)|
⇒ (a−b)2 + (b−c)2 = 4 ⋯⋯(i)
From (i) and (ii), we get bc=0
⇒ Either b=0 or c=0
If. b=0, then a2≤1. Then, only possibility is a=1 or -1