Let z and w be two non- zero complex numbers such that |z|=|w| and arg(z)+arg(w)=π. Then the value of (z+¯¯¯¯w)10 is
Open in App
Solution
Let arg(w)=θ. Then arg(z)=π−θ. ∴w=|w|(cosθ+isinθ) and z=|z|(cos(π−θ)+isin(π−θ)) =|w|(- cosθ+i sinθ)[∵|z|=|w|] =−|w|(cosθ−i sinθ)=−¯¯¯¯w∴z+¯¯¯¯w=0. ⇒(z+¯¯¯¯w)10=0