Let z and z0 be two complex numbers. It is given that |z|=1 and the numbers z,z0,z¯z0,1and0 are represented in an Argand diagram by the points P,P0,Q,A and the origin, respectively, then the value of |z−z0||z¯z0−1|=
Open in App
Solution
Given OA=1and|z|=1 ∴OP=|z−0|=|z|=1⇒OP=OA OP0=|z0−0|=|z0|
OQ=|z¯¯¯¯¯z0|=|z||z0|=|z0|=OP0 Also, ∠P0OP=arg(z0−0z−0)=arg(z0¯¯¯¯¯z0z¯¯¯¯¯z0)=arg(|z0|2z¯¯¯¯¯z0)=arg(1z(¯¯¯¯¯z0))=∠AOQ Thus, the triangle POP0 and AOQ are congruent. Hence, PP0=AQ⇒|z−z0|=|z¯¯¯¯¯z0−1| ∴|z−z0||z¯¯¯¯¯z0−1|=1