|z−3|≤|z−2|⇒|z−3|2≤|z−2|2
⇒(z−3)(¯¯¯z−3)≤(z−2)(¯¯¯z−2)
⇒z+¯¯¯z≥5
Assuming z=x+iy,
2x≥5⇒x≥52
Now,
|z−3|≤|z−6|⇒|z−3|2≤|z−6|2
⇒(z−3)(¯¯¯z−3)≤(z−6)(¯¯¯z−6)
⇒3z+3¯¯¯z≤27
⇒z+¯¯¯z≤273
⇒2x≤9⇒x≤92
Therefore, we get
52≤x≤92
Similarly, 0≤y≤3
This region is a rectangle with area A=(92−52)×(3−0)
A=6 sq.units