The correct option is C 7
Given, ∣∣∣2z+1z∣∣∣=1⋯(i)
We know, z=r(cosθ+isinθ)⋯(ii)
Putting (ii) in (i)
∣∣∣2(r(cosθ+isinθ))+1r(cosθ+isinθ)∣∣∣=1
⇒(2r+1r)2cos2θ+(2r−1r)2sin2θ=1
⇒(2r+1r)2−1=((2r+1r)2−(2r−1r)2)sin2θ
⇒4r2+1r2+3=8sin2θ
⇒4r2+1r2=8sin2θ−3
By using A.M.≥G.M., we have
4r2+1r22≥√4r2×1r2
⇒4r2+1r2≥4
∴8sin2θ−3≥4
⇒8sin2θ≥7