The correct option is D 34
If ax2+bx+c=0 has roots α,β then
α,β=−b±√b2−4ac2a
For roots to be b2−4ac≥0.
Description of Situation As imaginary part of z = x+iy is non- zero.
⇒y≠0
Method 1: Let z=x+iy
∴a=(x+iy)2+(x+iy)+1
⇒(x2−y2+x+1−a)+i(2xy+y)=0⇒(x2−y2+x+1−a)+iy(2x+1)=0, ...(1)
It is purely real, if y(2x+1) = 0
But imaginary part of z. i.e y is non-zero.
⇒2x+1=0orx=−12
From Eq. (1), 14−y2−12+1−a=0
⇒a=−y2+34⇒a<34
Method 2: Here, z2+z+(1−a)=0
∴z=−1±√1−4(1−α)2⇒z=−1±√(4a)−32
For z do not have real roots, 4a−3<0⇒a<34