Let z be an imaginary complex number satisfying |z−1|=1. If α=2z, β=2α and γ=2β, then the value of |z|2+|α|2+|β|2+|γ|2+|z−2|2+|α−4|2+|β−8|2+|γ−16|2 is
z1 and z2 are any two distinct complex numbers in an argand plane. If αβ |z1|=γδ|z2|,
then the complex number lies on the (α, β ϵ R)