Let z be any complex number. To factorise the expression of the form (zn−1), we consider the equation zn=1. This equation is solved using De moiver's theorem. Let 1,α1,α2.......αn−1 be the roots of this equation, then zn−1=(z−1)(z−α1)(z−α2).......(z−αn−1). This method can be generalised to factorize any expression of the form zn−kn.
For example, z7+1=Π6m=0(z−CiS(2mπ7+π7))
This can be further simplified as
z7+1(z+1)(z2−2zcosπ7+1)(z2−2zcos3π7+1)(z2−2zcos5π7+1) .......(i)
These factorisations are useful in proving different trigonometric identities e.g. in equation (i) if we put z=i, then equation (i) becomes
(1−i)=(i+1)(−2icosπ7)(−2icos3π7)(−2icos5π7)
i.e, cosπ7cos3π7cos5π7=−18
By using the factorisation for
z5+1, the value of
4sinπ10cosπ5 comes out to be :