Let z be a complex number with modulus 2 and argument 2π3 then z is equal to:
-1+i3
-1+i32
-1-i3
-1-i32
Explanation for the correct option:
Finding the complex number z:
Given, modulus=2 and Argument=2π3
Therefore, θ lies in the second quadrant.
Now,
x=rcosθ,y=rsinθ⇒x=2cos2π3,y=2sin2π3⇒x=-1,y=3[∵cos2π3=-12,sin2π3=32]
⇒z=x+iy=-1+i3
Hence, the correct answer is option (A).