wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Let z be those complex number which satisfy |z+5|4 and z(1+i)+¯z(1i)10,i=1. If the maximum value of |z+1|2 is α+β2, then the value of (α+β) is

Open in App
Solution

Let z=x+iy
Given, |z+5|4
(x+5)2+y216
Also, z(1+i)+¯z(1i)10
xy5....(2)
From (1) and (2)
Locus of z is the shaded region in the diagram.
|z+1| represents distance of 'z' from Q(1,0)
Clearly 'P' is the required position of 'z' when |z+1| is maximum.
P(522,22)
PQ2=32+162
α=32
β=16
Thus, α+β=48

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Geometric Representation and Trigonometric Form
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon