z=−1+√3i2=w, (cube root of unity)
P=[(−w)rw2sw2swr]P2=−I⇒[(−w)rw2sw2swr][(−w)rw2sw2swr]=[−100−1]⇒[w2r+w4s(−1)rwr+2s+wr+2s(−1)rwr+2s+wr+2sw2r+w4s]=[−100−1]⇒w2r+w4s=−1....(1)(−1)rwr+2s+wr+2s=0....(2)⇒(−1)rwr+2s=−wr+2s⇒(−1)r=−1⇒r=1,3 [∵r,s∈{1,2,3}]
For, r=1
w2+w4s=−1⇒w4s=−1−w2⇒w4s=w⇒s=1
For, r=3
w6+w4s=−1⇒w4s=−1−1=−2
⇒ Which is not possible
∴ Only one solution i.e., (1,1)