wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Let zi,¯¯¯zi (i=1,2,..,5) are the complex roots of the equation x10+(13x1)10=0, where the bar denotes complex conjugation. Then the value of 5i=11zi ¯¯¯zi is

Open in App
Solution

Let t=1x
x10+(13x1)10=01+(131x)10=0;x0
1+(13t)10=0(13t)10=1

Using DeMoivre theorem,
13t=cis((2k+1)π10)
Where k=0,1,2,,9
t=13cis((2k+1)π10)¯t=13cis((2k+1)π10)

Since, cis(θ)+cis(θ)=2cosθ
t¯t=16926cos((2k+1)π10)+1
=17026cos((2k+1)π10)

Now, the expression to find is,
5i=1ti¯ti=850264k=0cos(2k+1)π10
=85026S

S=4k=0cos(2k+1)π10S=cosπ10+cos3π10+cosπ2+cos7π10+cos9π10S=cosπ10+cos3π10cos3π10cosπ10S=0

5i=1ti¯ti=85026S=8505i=11zi ¯¯¯zi=850

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
De-Moivre's Theorem
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon