The correct option is D n=40 and Re(z)=−10
Let z=x+10i
⇒2(x+10i)−n2(x+10i)+n=2i−1⇒(2x−n)+20i=(2i−1)[(2x+n)+20i]
On comparing real and imaginary part, we have -
2x−n=2(−20)−(2x+n) and 20=2(2x+n)−20⇒2x−n=−40−2x−n and 20=4x+2n−20⇒4x=−40 and 4x+2n=40⇒x=−10 and −40+2n=40⇒n=40⇒n=40 and Re(z)=−10