Let zk=cos(2kπ10)+isin(2kπ10);k=1,2,........,9.
List - I | List - II | ||
(P) | For each zk there exists a zj such zk.zj= 1 | (1) | True |
(Q) | There exists a k ∈ {1, 2, ........, 9} such that z1⋅z=zk has no solution z in the set of complex numbers | (2) | False |
(R) | |1−z1|1−z2|.....|1−z9|10 equal | (3) | 1 |
(S) | 1−∑9k=1cos(2kπ10) | (4) | 2 |