The correct option is
C −72Given:
zk(k=0,1,2,............6)zk(k=0,1,2,............6)be the roots of equation (z+1)7+z7=0To find: ∑6k=0Re(zk)
Soln:
If zk is a root of the equation,
(z+1)7+z7=0 then it satisfies the equation.
Taking modules both sides
∴|zk+1|7=|−zk|7
∣∣(zk+1)7∣∣=∣∣−zk7∣∣
|zk+1|=|zk|
that is
|zk+1|=|zk−0|
So that zk is equidistant from the points(0,0) and(−1,0) is the complex plan.
Therefore, it lies on the perpendicular bisector of the line segment joining (0,0) and(−1,0)
that iszk lies on the linex=−12
To find the solution of the zk note that.(z+1)7+z7=0 May be written as
[−(z+1)z]7=1
Therefore we have, −(z+1)z=ei(2kπ7)
fork=0,1,2,......6
Now, let λ=2π7and solve for z to get
zk=−11+eiλk=−11+cosλk+isinλk
zk=−1+cosλk−isinλk(1+cosλk)2+isin2λk
zk=−1+cosλk−isinλk2(1+cosλk)=−12+isinλk2(1+cosλk)
∴Re(zk)=−12
∑k=6k=0Re(zk)=∑k=6k=0=−12∑k=6k=0Re(zk)=−12,−12,−12,−12,−12,−12,−12
=−72
Hence, the answer is −72