The correct option is A Re(z)>1
Let z=x+iy
log1/2|z−2|>log1/2|z|
Therefore, log1/2|x−2+iy|>log1/2|x+iy|
log1/2√(x−2)2+y2>log1/2√x2+y2
12log1/2[(x−2)2+y2]>12log1/2(x2+y2)
12[(x−2)2+y2]−log1/2(x2+y2)>0
log1/2(x−2)2+y2x2+y2>0
[12]log1/2(x−2)2+y2x2+y2<[12]0
[when base <1, inequality reverses]
Thus (x−2)2+y2x2+y2<1
⇒(x−2)2+y2<x2+y2
⇒(x−2)2<x2
Also |x−2|<|x|
⇒−x<x−2<x
⇒x−2>−x
⇒2x>2
⇒x>1
Hence, Re(z)>1.