The correct option is C 1 or -1
Let z=cosθ+i.sinθ,ω=cosα+i.sinα
So, |z+iω|=|(cosθ−sinα)+i(sinθ+cosα)|
Also, |z−i¯ω|=|(cosθ−sinα)+i(sinθ−cosα)|
Since these are equal, cosα=0=>sinα=1
Since the values of the modulus is 2, we have:
(cosθ−sinα)2+(sinθ)2=4=>cos2θ+sin2α+sin2θ−2cosθsinα=4
Thus, cosθ∗sinα=1=>cosθ=sinα=±1
This implies sinθ=cosα=0
Hence (c) is correct.