Let z,ω∈C satisfy z2+¯ω=z and ω2+¯z=ω then number of ordered pairs of complex number (z,ω) is equal to
Open in App
Solution
z2+¯ω=z......(i) ω2+¯z=ω.....(ii) Taking conjugate of (ii) z=¯ω−¯ω2 From (i) z=(z−z2)+(z−z2)2 ⇒z=0,(1+i),(1−i) From (i) (z,ω)=(0,0),(1+i,1+i),(1−i,1−i)