wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Let zr(ir4) be complex numbers such that |Zr|=r+1 and |30z1+20z2+15z3+12z4|=K|z1z2z3+z2z3z4+z3z4z1+z4z1z2|. Then the value of k equals

A
|z1z2z3|
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
|z2z3z4|
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
|z3z4z1|
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
|z4z1z2|
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is D |z1z2z3|
|zr|=r+1|z1|=2,|z2|=3,|z3|=2 & |z4|=5
Now |30z1+20z2+15z3+12z4|=k|z1z2z3+z2z3z4+.....|
LHS =302z1+203z2+154z3+125z4
|z1|2=2 |z2|=3, |z3|=4, |z4|2=5
z1¯¯¯¯¯z1=2z2¯¯¯¯¯z2=3z3¯¯¯¯¯z3=4z4¯¯¯¯¯z4=5
z1=2¯¯¯¯¯z1,z2=3¯¯¯¯¯z2,z4=5¯¯¯¯¯z4
LHS=60¯¯¯¯¯¯¯¯¯¯¯¯¯¯z1z2z3+¯¯¯¯¯¯¯¯¯¯¯¯¯¯z2z3z4+...+....z1z2z3z4
=60z1z2z3+z2z3z4+...z1z2z3z4
k=0|z1z2z3z4|=2×3×5×2|z1z2z3z4|
=|z1|2|z2|2|z4|2|z3||z1z2z4z3|
=|z1z2z4|

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Geometric Representation and Trigonometric Form
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon