v=(1−izz−i)×(ii)v=(z+iz−i)×(1i)∴|v|=(|z+i||z−i|)×(1|i|)1=((x+iy+i)|x+iy−i|)×(1i)|x+i(y−1)|=|x+i(y+1)|√x2+(y−1)2=√x2+(y+1)2x2+(y−1)2=x2+(y+1)2(y−1)2=(y+1)2∴y−1=±(y+1)ory−1=+y+1then−1=1(notpossible)theny−1=−(y+1)ory=0∴x=x+iy=x+0=xsozisarealnumber.
If z=x+iy and w=1−ziz−i, show that |W|=1⇒z is purely real.