Let z=r(cosθ+isinθ)=reiθ
(¯zz)i=eϕ
⇒(re−iθreiθ)i=eϕ
⇒(e−2iθ)i=eϕ
⇒e2θ=eϕ
⇒2θ=ϕ=sin−1(2425)
⇒sin2θ=2425
⇒2tanθ1+tan2θ=2425⇒25tanθ=12tan2θ+12⇒12tan2θ−25tanθ+12=0⇒(3tanθ−4)(4tanθ−3)=0
So, tanθ=34 or tanθ=43
Therefore, yx=34 or yx=43
Hence the minimum value of x+y will be 7.