Let z1,z2 be two complex numbers such that z1+z2andz1z2 both are real, then
z1=-z2
z1=z2¯
z1=-z2¯
z1=z2
Explanation for the correct answer:
Calculating z1:
Given, z1+z2andz1z2 are real.
Let, z1=a+ib,z2=c+id
Since, z1+z2 is real,
⇒(a+c)+i(b+d)isreal⇒b+d=0[z1+z2isreal]⇒b=-d......(1)
Also, z1z2 is real ,
=(a+ib).(c+id)isreal=ac+iad+ibc+i2bdisreal=ac+iad+bc-bdisreal[∵i2=-1]=(ac-bd)+i(ad+bc)isreal⇒ad+bc=0[z1.z2isreal]⇒a(-b)+bc=0[From(1)]⇒a=c.....(2)
Therefore,
z1=a+ib=c-id[From(1)and(2)]=z2¯[∵z2=c+id]
Hence, the correct answer is option (B).