lf 1,ω,ω2 are cube roots of unity then the value of(a+2b)2+(aω+2bω2)2+(aω2+2bω)2=
a2+4b2+4ab+a2ω2+4abω3+4b2ω4+a2ω4+4b2ω2+4abω3 =a2(1+ω2+ω4)+4b2(1+ω4+ω2)+4ab(ω3+1+ω3) =a2(1+ω+ω2)+4b2(1+ω+ω2)+4ab(1+1+1) =12ab