lf 23+43+63+…+(2n)3=kn2(n+1)2, then k=
Find (33−23)+(53−43)+(73−63)+.... to 10 terms.
Or
Show that 1×22+2×32+....+n×(n+1)212×2+22×3+....+n2×(n+1)=3n+53n+1