The correct option is
A 1−c,2−a,3−d,4−bA) cosA+cosB+cosC
=2cos(A+B2)cos(A−B2)+cos(π−(A+B))
=2cos(A+B2)cos(A−B2)−cos(A+B)
=2cos(A+B2)cos(A−B2)−2cos2(A+B2)+1
=2cos(A+B2)(cos(A−B2)−cos(A+B2))+1
=2cos(π2−c2)(2sinA2sinB2)+1
=1+4sinA2sinB2sinC2
B) sin2A+sin2B+sin2C
=1−cos2A2+1−cos2B2+1−cos2B2
=32−12(cos2A+cos2B+cos2C)
=32−12(2cos(A+B)cos(A−B)+cos(2π−2(A+B)))
=32−12(2cos(A−B)cos(A−B)+cos2(A+B)−1)
=2+2cosAcosBcosC
C) sin2A+sin2B+sin2C
=2sin(A+B)cos(A−B)+sin(2π−2(A+B))
=2sin(A+B)cos(A−B)−sin2(A+B)
=2sin(A+B)cos(A−B)−2sin(A+B)cos(A−B)
=2sin(A+B)(cos(A−B))−cos(A+B)
=4sinAsinBsinC
D) sinA+sinB+sinC
=2sin(A+B2)cos(A−B2)+sin(A+B)
=2sin(A+B2)cos(A−B2)+2sin(A+B2)cos(A+B2)
=2sin(A+B2)(cos(A−B2)+cos(A+B2))
=4cosA2cosB2cosC2