wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

lf A+B+C=π, then cos2A+cos2B+cos2C+4cosAcosBcosC is equal to

A
0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
1
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
3
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is B 1
A+B+C=180C=180(A+B)

Using A+B+C=180C=180(A+B)

We get

cos2A+cos2B+cos2C=2cos(A+B)cos(AB)+cos2(180(A+B))

=2cos(A+B)cos(AB)+cos(3602(A+B))

=2cos(A+B)cos(AB)+cos2(A+B)

Now from cos2θ=2cos2θ1

2cos(A+B)cos(AB)+cos2(A+B)

=2cos(A+B)cos(AB)+2cos2(A+B)1

=2cos(A+B)(cos(AB)+cos(A+B))1

From substituting value of A+B=180C and cosC+cosD=2cosC+D)cos(DC)

We get, 2cos(A+B)(cos(AB)cos(A+B))1

=2cos(180C)(2cosAcosB)1

=2cosC(2cosAcosB)1

=4sinAsinBsinC1

Therefore

cos2A+cos2B+cos2C+4cosAcosBcosC1

=4cosAcosBcosC+4cosAcosBcosC1=1

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Transformations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon