The correct option is D 1112
Let the length of the cube be a units.
Let AA′,BB′,CC′,OP be the diagonals of the cube.
Coordinates of vertices are O(0,0,0),A(a,0,0),A′(0,a,a),B(0,b,0),B′(b,0,b),C(0,0,c),C′(c,c,0),P(a,a,a)
D.Rs of AA′ are (−a,a,a).
D.Rs of BB′ are (a,−a,a)
D.Rs of CC′ are (a,a,−a)
D.Rs of OP are (a,a,a)
D.c's of AA′ are −a√a2+a2+a2,a√a2+a2+a2,a√a2+a2+a2=−1√3,1√3,1√3
D.c's of BB′ are 1√3,−1√3,1√3
D.c's of CC′ are 1√3,1√3,−1√3
D.c's of OP are 1√3,1√3,1√3
Let the d.c's of given line be l,m,n such that l2+m2+n2=1
Given , the line makes angles 60o,45o,45o and θ with the four diagonals of a cube.
cos600=−l+m+n√3
⇒12=−l+m+n√3 .....(1)
cos450=l−m+n√3
⇒1√2=l−m+n√3 .....(2)
cos450=l+m−n√3
⇒1√2=l+m−n√3 .....(3)
cosθ=l+m+n√3 ....(4)
Squaring and adding (1),(2),(3),(4), we get
⇒54+cos2θ=43 (∵l2+m2+n2=1)
⇒cos2θ=112
⇒sin2θ=1112