The correct option is B a+b+c
Letα,βbetherootsofthegivenequationax2+bx+c=0∴α+β=−ba....(1)andαβ=ca.....(2)Now,theequationhavingroots1−αα,1−ββwillbex2−(1−αα+1−ββ)x+(1−αα)(1−ββ)=0⇒x2−2−(α+β)αβx+1−(α+β)+αβαβ=0Substitutingforα+βandαβfromequations(1)and(2),weget,x2−2a+bcx+a+b+cc=0⇒cx2−(2a+b)x+(a+b+c)=0Thisequationisidenticalwithpx2+qx+r=0∴comparingthelastterms,weget,r=a+b+cAns−OptionB.